14.1

SECTION 14

OPTIMIZING PREPROCESSOR
14.1. INTRODUCTION

While the S/FILSYN program has always offered the most powerful capabilities of any known
filter synthesis program, there has been one feature missing: the ability to design filters with pass
bands of prescribed shape. The direct specification of filters in S/FILSYN was restricted to the
flat passband option (either maximally flat or equal-ripple), with the special exception of sloping
passband for bandpass filters.

The functional input option alleviated this problem somewhat, but it was still necessary to find
the poles and zeros of a transfer function with the correct shape, before we could use S/FILSYN
to synthesize the circuit.

Our new OPTIMIZING PREPROCESSOR has been developed to perform this function, thereby
removing one of the few remaining gaps in our capabilities. It is able to adjust the poles and
zeros of a transfer function to meet a given set of loss (and possibly delay) requirements.

In deciding to use the transfer function singularities as optimization parameters -- as opposed to
circuit component values -- we have been guided by several considerations. One was the capabil-
ity of S/FILSYN to go from transfer functions to circuit configurations and element values with
ease. Another consideration was the existence of other programs with the capability of adjusting
circuit element values to match required performance characteristics. The overwhelming reason
however, was the difficulty we experienced in achieving optimal results using a fixed circuit con-
figuration and working with the component values. We found that working with the transfer
func- tion parameters offers better optimization methods, leads to smoother and much faster
conver- gence and better optima. We have also avoided the problem of how to select an initial
circuit con- figuration that would be satisfactory for the purpose at hand, postponing this decision
until after the procedure converged.

14.2. DATA INPUT.

This program needs two sets of data, that it will read from disk files. The first contains the re-
quirements in tabular form. This must be a standard ASCII file that has the following structure:

A title line. This is followed by a blank line, and a line that contains the following keywords,
separated by spaces and/or commas, in this order:

FREQ LOSS LW [DLAY DW]

Here LW stands for Loss Weight, DW for Delay Weight and the last two keywords may be left
out simultaneously, if the only requirements are for the loss.

S/FILSYN Manual Optimizing preprocessor

14.2

The next line should contain items indicating the units used. For example:
kHz dB usec

which refer to the frequency, loss and delay columns. Acceptable frequency and delay units are
Hz, kHz, MHz, GHz, sec, msec, usec, nsec and psec respectively. The LW and DW columns
need no unit indicators; these columns will contain numbers only. Actually, the dB item is also
superfluous, since the loss will always be assumed to be entered in dB.

After another blank line as a separator, we can have up to 501 data lines, each containing as
many numbers as there are column keywords in the third line. There should be no numbers
missing. If a line is to contain, for example, a delay requirement only with no loss requirement,
we still have to enter an item in the loss column and a zero in the loss weight (LW) column to
indicate to the pro- gram, that the loss should be ignored.

The actual numbers can be in free format, with or without decimal points, D or E exponents, and
separated by spaces or commas or their combination. Blank lines or comment lines (beginning
with an exclamation point) can also be used to make the file more readable. Comments may also
be put on data lines following the actual data. Weights are positive, usually 1.0 or greater, except
for zero values.

As an example, here is the top section of a data file that we have been using to test the program:

This is the title line.

FREQ LOSS LW DLAY DW
kHz dB msec
0.1 -0.007 1. 2. 1.
0.2 -0.029 1. 2. 1.
0.3 -0.065 1. 2. 1.
0.4 -0.116 1. 2. 1.
0.5 -0.182 1. 2. 1.
0.6 -0.264 1. 2. 1.
0.7 -0.361 1. 2. 1.
0.8 -0.474 1. 2. 1.
0.9 -0.603 1. 2. 1.
1.0 -0.750 1. 2. 1.
1.05 -0.830 1. 2. 1.
1.10 -0.914 1. 2. 1.
1.15 -1.003 1. 2. 1.
1.20 -1.097 1. 2. 1.
1.25 -1.197 1. 2. 1.
1.30 -1.301 1. 2. 1.
1.35 -1.410 1. 2. 1.
1.40 -1.525 1. 2. 1.
1.45 -1.645 1. 2. 1.
1.50 -1.772 2. 2. 1.
1.55 -1.904 2. 2. 2.
1.60 -2.043 5. 2. 2.
1.65 -2.188 5. 2. 2.
1.70 -2.341 5. 2. 2.
1.75 -2.500 5. 2. 2.
1.80 -2.668 5. 2. 2.
2.2 40.0 10 1 0.0
2.3 40.0 10 1 0.0

Optimizing preprocessor S/FILSYN Manual

14.3

2.4 40.0 10. 1. 0.0
2.5 40.0 10. 1. 0.0
2.6 40.0 5. 1. 0.0
2.7 40.0 5. 1. 0.0
2.8 40.0 2. 1. 0.0
2.9 40.0 2. 1. 0.0
3.0 40.0 2. 1. 0.0

This file can have any name, but with an extension of .REQ (for requirements).

The other required file is the one that contains the starting point of the approximation, i.e. the ini-
tial values of the poles and zeros of the transfer function. This is also a simple ASCII file and its
structure needs no detailed description, because S/FILSYN writes it by itself. As described later,
our best initial approximation will most likely come from S/FILSYN itself and the SMAIN (root)
segment of the program will write this file if we invoke the DATA command. This file will auto-
matically have a .PZ extension.

As an example, here is the file SFILSYN has written from a 7th order elliptic lowpass with .2 dB
passband ripple up to 2 kHz. The stop band begins at 2.2 kHz and yields about 42 dB stopband
suppression.

! POLE-ZERO DATA OF:
! test?
! ZEROS:
0.000000000D+00 1.396014474D+04

0.000000000D+00 1.551294643D+04

0.000000000D+00 2.355907736D+04
! POLES:

6.359084810D+03 0.000000000D+00

4.059931126D+03 8.478242531D+03

1.448897681D+03 1.182648729D+04

3.207255958D+02 1.271248589D+04

The exclamation point character signals the program to ignore everything that follows it. There-
fore when ! is the first symbol, the whole line is ignored. Incidentally, the data is given in rad/sec
units, which is what we need (except in the case of digital or microwave filters, where we need
normalized values).

Also, complex conjugate pairs need to be entered only once, and even complex zero quadruplets
are entered as one pair. The definition of the function is such, that all numbers are entered as
posi- tive and a realizable transfer function is represented by a// numbers being positive. During
the op- timization process the numbers representing the zeros will most likely remain positive,
but some- times some of those related to the poles may become negative, representing a
nonrealizable result. We will point out ways of dealing with this situation later.

All other data needed for the operation of this preprocessor are simple decisions and a few nu-

merical data items that are entered from the keyboard through the usual conversational method
S/FILSYN users are accustomed to.

S/FILSYN Manual Optimizing preprocessor

14.4

14.3 INITIAL VALUE SELECTION

One of the most important features of any iterative optimization procedure is its sensitivity to the
initial values. The closer the initial values are to the final ones, the faster the procedure is going
to converge and the more likely it will yield the best possible solution.

We have found that the best initial approximation is the one we can obtain from S/FILSYN in a
manner that all stopband requirements are met. If there are delay requirements as well, we can
simply add complex zeros and twice the number of complex poles to such a transfer function.
The initial values of these additional complex quads of zeros can be obtained by delay equalizing
the initial filter and looking at the zeros these delay sections would add to the overall function.
The corresponding poles can be obtained by picking two pairs for each complex zero, one on
either side of the zeros. Do nof select identical pairs of poles, optimization routines cannot
handle mul- tiple singularities.

We will illustrate the procedure by examples later in this section.

14.4 PROGRAM OUTPUT

We will see later, that the program keeps us informed of the progress of the optimization and
will yield a tabulated set of results every once in a while, so that we can make an intelligent
decision as to the next step. Once we decide to accept the final results, we can write the data into
another data file in a format, that S/FILSYN will be able to read back.

This output format (although still an ASCII file) is different from the one that S/FILSYN writes
and the optimizer reads. The normalization and sequence of the numbers are different in the two
files; even the amount of the information may be different. The main reason for this is that we
needed to have an input file to the optimizer that had a simple and logical structure. At the same
time, the functional input data sequence to S/FILSYN has been determined a long time ago;
changing it would have meant changing a large number of other files and program segments, and
we definitely subscribe to the well known maxim, “If it ain't broke, don't fix it!”.

Hence the data file going from S/FILSYN to the optimizer (extension: .PZ) is different from the
one that goes from the optimizer to S/FILSYN (extension: .DAT) and we must keep this straight.
If we don't, a program will read the wrong file and we will not discover the error until much
later.

14.5 DEFINITION OF ERROR

In order to understand the operation of the program, we must say a few words about error defini-
tion. We use, by and large, the standard sum of squared and weighted errors over the whole fre-
quency range. In the case of the stopband, i.e. where the requirements are greater than 20 dB, if
the loss is more than the value required, the error is set to zero.

Optimizing preprocessor S/FILSYN Manual

14.5

For the delay characteristics, we do two additional things. First, we subtract an additional flat de-
lay from the requirements. This value is initially determined by the program, but later it is offered
as an additional parameter to the user. Second, we use an additional overall multiplier for the de-
lay error to enable us to control the relative weighting of the loss and the delay. This also permits
us to ignore the delay, even if the requirements list it, by setting this overall weight to zero. Both
of these parameters are useful in running the program, but their values can best be determined
during the run by observing the results.

14.6 OPTIMIZATION STRATEGIES

The program uses three optimization strategies that the user can freely use in any sequence, any
number of times. Before describing these strategies, we must point out that due to the error defi-
nition used, no exact gradient information is available, and we are restricted to the use of algo-
rithms, that either do not need the gradient, or approximate it by themselves.

a. The first is the simplex method (ref. [42]) that is fast, starts from any starting point and is rec-
ommended for use at the start of any optimization. It is limited to 100 iterations, but can be
restarted for additional iterations. It usually will stop after the 100 iterations with a comment
stating that it did not converge, but will show a sizable improvement in the error. In order to
limit the amount of printout, we print the error once every 10 iterations.

b. The second method is Powell's method (ref. [43]) and is another one that does not need deriva-
tive information. This one is somewhat less reliable; sometimes the error worsens instead of
improving, but it can be used effectively in the middle of an iterative optimization run. The
number of iterations is limited to 50, but we will usually see 6 to 12 iterations, hence the re-
sults are printed after each iteration.

¢. The third and last method is a gradient-based method that approximates the derivatives (ref.
[44]). This is a reliable method, sometimes a bit slow, but always improves the results. The
number of iterations is limited to 50 and results are printed after every 5 iterations. One can
alternate methods 2 and 3, but should usually finish with method 3.

14.7 EXAMPLES

Example 14.7.1

As usual, the simplest way to introduce the program to new users is by way of a few examples.
We will be using the requirement file illustrated above, which incidentally, specifies a loss shape

that compensates for the (sin x)/x rolloff of a sample-and-hold circuit.

Calling the program is simple and we start by reading the file EXAMPLE.REQ which contains
the requirements:

C:>opt
***x*x OPTIMIZING PREPROCESSOR ***x*

S/FILSYN Manual Optimizing preprocessor

14.6

Copyright (C) 1991-1995 Dr. George Szentirmai
All Rights Reserved.

Version 1.2 10/3/95

FIRST WE NEED THE TABULATED REQUIREMENTS

ENTER FILE NAME

> example

ENTER NORMALIZATION FREQUENCY (UPPER EDGE OF PASSBAND)
> 2k

ENTER OVERALL DELAY WEIGHT

> 0

The normalization frequency is the (upper) passband edge and is needed for just that purpose,
normalization. Setting the overall delay weight to zero tells the program to ignore the delay for
this run. Next comes the specification of the approximating function:

FILTER KIND - LUMPED: 0O, DIGITAL: 1 OR MICROWAVE: 2
ZPgROXIMATING FUNCTION DATA IS NEXT

ENTER DEGREE (SHOULD BE NO MORE THAN 12)

EN;ER MULTIPLICITY OF ZERO AT ZERO

EN%ER NUMBER OF IMAGINARY-AXIS ZEROS

EN;ER NUMBER OF COMPLEX ZEROS

>0

The above data about the approximating function is necessary to tell the program how much in-
formation it must find in the file to be specified next. We are going to use the 7th order elliptic
lowpass mentioned earlier, as our initial function. Next we read this pole-zero data from the file,
called TEST7.PZ:

WE SHALL READ (NORMALIZED) INITIALIZATION DATA FROM A FILE NEXT
ENTER FILE NAME

> test?

ANY OF THESE TO REMAIN FIXED? (Y/N)

>y

ENTER THE SERIAL NUMBERS OF THE 3 ZEROS YOU WISH TO REMAIN FIXED
ENTER "A" IF YOU WISH ALL TO REMAIN FIXED

> a

ENTER THE SERIAL NUMBERS OF THE 4 POLES YOU WISH TO REMAIN FIXED
>

After reading the initial data, we told the program to keep all zeros fixed (i.e. do not let them be
varied by the optimization) but let all the poles vary. As we can see, we have complete control
over which of the pole-zero data will be fixed and which will be variable. The default, if we
enter nothing, is all data variable. Next we get a summary of the data the program has at this
point:

This is the title line.

NUMBER OF POINTS SPECIFIED = 51
STARTING POINT = 100.00000 Hz
END POINT = 10.00000 kHz
LOSS AND DELAY REQUIREMENTS
OF LOSS POINTS SPECIFIED = 51
OF DELAY POINTS SPECIFIED = 26
OVERALL DELAY WEIGHT = 0.000000E+00

LUMPED FUNCTION IS SPECIFIED

Optimizing preprocessor S/FILSYN Manual

APPROXIMATING FUNCTION:

* Kk Kk

ZEROS **x*
0.0000000D+00
0.0000000D+00
0.0000000D+00

* Kk Kk POLES * Kk Kk

6.3590848D+03

4.0599311D+03
1.4488977D+03
3.2072560D+02

NUMBER OF VARIABLE PARAMETERS

* % % %

N e

= P o O

.3960145D+04
.5512946D+04
.3559077D+04

.0000000D+00
.4782425D+03
.1826487D+04
.2712486D+04

* % %

14.7

The asterisks indicate variable parameters and this agrees with the indicated number of variables
the program has. Incidentally, the maximum number of variables the optimizer can handle at this
time is 30. If only the poles are allowed to vary, this permits us to handle functions of up to de-

gree 30.

This is followed by an analysis and tabulation as follows:

x RESULTS OF THE ANALYSIS *

FREQUENCY
IN HZ

.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+03
.050000E+03
.100000E+03
.150000E+03
.200000E+03
.250000E+03
.300000E+03
.350000E+03
.400000E+03
.450000E+03
.500000E+03
.550000E+03
.600000E+03
.650000E+03
.700000E+03
.750000E+03
.800000E+03
.200000E+03
.300000E+03
.400000E+03
.500000E+03
.600000E+03
.700000E+03
.800000E+03
.900000E+03

NNONNNMNNNNRRRRRRRRRRRRRRRERR OO0 WN R

S/FILSYN Manual

-1

-1.

-1

-1.
-1.

-1

-1.
-1.

-1

-1.
-1.

-1

-1.
-1.

-1

-1.
-1.

-1

-1.
-1.

-1

-1.
-1.

-1

-1.
-1.

41

41.
47.
55.
44.
42.

41

41.

LOSS VALUES
DEVIATION

ACTUAL

.205517
174179
.129631
081760
041572
.019100
021324
050106
.100338
158710
184677
.204555
215462
215031
.201927
176365
140579
.099106
058773
028229
.016800
032268
077091
.142536
202026
211338
.200878
204037
603512
670315
983311
155087
.268780
310917

-1

-1

e e

.198517
-1.
.064631
.965760
.859572
. 755100
.660324
.576106
.497338
.408710
.354677
.290555
.212462
.118031
.004927
.124635
.269421
.425894
.586227
.743771
.887200
.010732
.110909
.198464
.297974
.456662
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

145179

PERERPRPRERPNNNWOWNOOIOG OO S DD DDWWWWWWNoNNDNNDNDDNDN

DELAY VALUES
DEVIATION

ACTUAL

.731306E-04
.721680E-04
.712588E-04
.713084E-04
.733658E-04
.784973E-04
.876740E-04
.016452E-04
.207477E-04
.446437E-04
.580432E-04
.721219E-04
.866358E-04
.013793E-04
.162652E-04
.314292E-04
.473496E-04
.649755E-04
.858538E-04
.122555E-04
.472875E-04
.949317E-04
.598018E-04
.461365E-04
.554297E-04
.838756E-04
.062770E-04
.771280E-04
.713049E-04
.099962E-04
.700205E-04
.419492E-04
.211943E-04
.052526E-04

-1

-1

-1

-1

-1

-1

-1

-1

-1

[cNololoNeoNeNe]

.726869E-03
-1.
.728741E-03
-1.
-1.
.721503E-03
-1.
-1.
.679252E-03
-1.
-1.
.627878E-03
-1.
-1.
.583735E-03
-1.
-1.
.535025E-03
-1.
-1.
.452713E-03
-1.
-1.
.253864E-03
-1.
-1.

0.
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00

727832E-03

728692E-03
726634E-03

712326E-03
698355E-03

655356E-03
641957E-03

613364E-03
598621E-03

568571E-03
552650E-03

514146E-03
487745E-03

405068E-03
340198E-03

144570E-03
016125E-03
000000E+00

Optimizing preprocessor

14.8

3.000000E+03 41.928524 .000000 9.264331E-05 0.000000E+00
3.200000E+03 44.413113 .000000 7.401362E-05 0.000000E+00
3.400000E+03 48.632847 .000000 6.096491E-05 0.000000E+00
3.600000E+03 56.539547 .000000 5.136070E-05 0.000000E+00
3.800000E+03 66.631863 .000000 4.402761E-05 0.000000E+00
4.000000E+03 53.432812 .000000 3.826790E-05 0.000000E+00
4.400000E+03 46.642712 .000000 2.985478E-05 0.000000E+00
4.800000E+03 43.972271 .000000 2.406081E-05 0.000000E+00
5.200000E+03 42.608494 .000000 1.986936E-05 0.000000E+00
5.600000E+03 41.862103 .000000 1.672316E-05 0.000000E+00
6.000000E+03 41.458599 .000000 1.429247E-05 0.000000E+00
6.500000E+03 41.237454 .000000 1.195249E-05 0.000000E+00
7.000000E+03 41.206242 .000000 1.015668E-05 0.000000E+00
7.500000E+03 41.290608 .000000 8.745440E-06 0.000000E+00
8.000000E+03 41.447605 .000000 7.614500E-06 0.000000E+00
9.000000E+03 41.884022 .000000 5.931894E-06 0.000000E+00
1.000000E+04 42.398708 .000000 4.757077E-06 0.000000E+00

SUM OF ERROR SQUARES = 4.836155D+01

WISH TO WRITE RESULTS ON FILE? (Y/N)

> n

PLOT - WIDE: W, NARROW: N, GRAPHICS: G OR END: E

> e

The delay is also tabulated together with the error even though it is not taken into account. The
errors are non-weighted in this tabulation. We can write this data in a file and/or display it graph-
ically, as usual.

Next we start the iterative optimization, using the first algorithm first:

NO MORE ITERATION: 0 OR METHOD 1, 2 OR 3
> 1

METHOD NO. 1

ITERATION = 10 ERROR = 6.172057D+00
ITERATION = 20 ERROR = 2.723922D+00
ITERATION = 30 ERROR = 1.717367D+00
ITERATION = 40 ERROR = 4.918677D-01
ITERATION = 50 ERROR = 2.226058D-01
ITERATION = 60 ERROR = 1.892727D-01
ITERATION = 70 ERROR = 1.646863D-01
ITERATION = 80 ERROR = 1.593928D-01
ITERATION = 90 ERROR = 1.567886D-01
ITERATION = 100 ERROR = 1.486046D-01
SIMPLEX -- NO CONVERGENCE IN 100 ITERATIONS

*** SIMPLEX *** IS FINISHED

APPROXIMATING FUNCTION:

* * k% ZEROS * * k%
0.0000000D+00 1.3960145D+04
0.0000000D+00 1.5512946D+04
0.0000000D+00 2.3559077D+04

* % k% POLES * * k%
6.8049599D+03 * 0.0000000D+00
4.3791959D+03 * 8.8658424D+03
1.9623427D+03 * 1.1232360D+04 *
4.6229324D+02 * 1.1981177D+04 *

As we can see, there has been a steady improvement and the overall decrease in the error is more
than two orders of magnitude. The new parameters are printed, but in order to cut down on out-
put, no analysis results are shown. However, as we shall see in a moment, we can look at that
any time we wish. The iteration limit is 100, but we can try it several times, if we wish. After

Optimizing preprocessor S/FILSYN Manual

14.9

another 100 iterations using method 1, which provided another 2 to 1 improvement, we try
method 2:

NO MORE ITERATION: 0 OR METHOD 1, 2 OR 3

> 2

METHOD NO. 2

ITERATION = 1 ERROR = 7.02812809D-02
ITERATION = 2 ERROR = 6.73044052D-02
ITERATION = 3 ERROR = 6.68022340D-02
ITERATION = 4 ERROR = 6.67132278D-02
ITERATION = 5 ERROR = 6.67132278D-02
ITERATION = 6 ERROR = 6.66476747D-02
ITERATION = 7 ERROR = 6.66476747D-02
ITERATION = 8 ERROR = 6.77373584D-02

CONVERGENCE NOT POSSIBLE DUE TO INACCURACY IN VALUES
***x QPTIM *** IS FINISHED

APPROXIMATING FUNCTION:

* Kk ZEROS * Kk
0.0000000D+00 1.3960145D+04

0.0000000D+00 1.5512946D+04
0.0000000D+00 2.3559077D+04

* Kk Kk POLES * Kk Kk
6.9862411D+03 * 0.0000000D+00
4.3031835D+03 * 8.7793345D+03 *
1.9611739D+03 * 1.1393750D+04
5.4767085D+02 * 1.1935595D+04 *

This method did not make much of a dent at this time, so let us see what method 3 can do:

NO MORE ITERATION: 0O OR METHOD 1, 2 OR 3

> 3

METHOD NO. 3

ITERATION = 5 ERROR = 6.77051000D-02

ITERATION = 10 ERROR = 6.76736538D-02

ITERATION = 15 ERROR = 6.66312995D-02

ITERATION = 20 ERROR = 6.34736720D-02

ITERATION = 25 ERROR = 6.23288089D-02

METHOD 3 WARNING -- INFO = 3: CANNOT FIND LOWER POINT

*** GRADIENT *** IS FINISHED

APPROXIMATING FUNCTION:

* Kk Kk ZEROS * Kk Kk
0.0000000D+00 1.3960145D+04

0.0000000D+00 1.5512946D+04
0.0000000D+00 2.3559077D+04

* K Kk POLES * Kk Kk
7.0410322D+03 * 0.0000000D+00
4.3314161D+03 * 8.7473339D+03 *
1.9636314D+03 * 1.1396078D+04 *
5.6709805D+02 * 1.1909901D+04 *

This method doesn’t improve things very much either, therefore we may conclude that we are, in
fact, close to the optimum. That is unfortunately not the case. Trying methods 2 and 3 in an alter-
nating fashion a few more times, we get the results:

S/FILSYN Manual Optimizing preprocessor

14.10

ITERATION = 18 ERROR =
ITERATION = 19 ERROR =
ITERATION = 20 ERROR =
ITERATION = 21 ERROR = .80270350D-03

ITERATION = 22 ERROR = .78779524D-03

CONVERGENCE NOT POSSIBLE DUE TO INACCURACY IN VALUES
***x QPTIM *** IS FINISHED

.81127686D-03
.80490085D-03
.80363837D-03

(GG N NCNE)]

APPROXIMATING FUNCTION:

* Kk Kk ZEROS * Kk Kk

0.0000000D+00 1.3960145D+04
0.0000000D+00 1.5512946D+04
0.0000000D+00 2.3559077D+04

* Kk Kk POLES * Kk Kk

7.9892417D+03 * 0.0000000D+00

4.8015476D+03 * 8.3171246D+03 *
1.9508847D+03 * 1.1066426D+04 *
5.1053773D+02 * 1.1843501D+04 *

This is another order of magnitude improvement. At this point we elect to stop the iteration and
we get the tabulated values as follows:

NO MORE ITERATION: 0 OR METHOD 1, 2 OR 3
> 0
**** RESULTS OF THE ANALYSIS ***x*

FREQUENCY LOSS VALUES DELAY VALUES
IN HZ ACTUAL DEVIATION ACTUAL DEVIATION

1.000000E+02 -.035229 -.028229 2.679172E-04 -1.732083E-03
2.000000E+02 -.046975 -.017975 2.694093E-04 -1.730591E-03
3.000000E+02 -.069390 -.004390 2.722117E-04 -1.727788E-03
4.000000E+02 -.106152 .009848 2.767624E-04 -1.723238E-03
5.000000E+02 -.161320 .020680 2.836089E-04 -1.716391E-03
6.000000E+02 -.238389 .025611 2.933531E-04 -1.706647E-03
7.000000E+02 -.339314 .021686 3.065859E-04 -1.693414E-03
8.000000E+02 -.463628 .010372 3.238164E-04 -1.676184E-03
9.000000E+02 -.607999 -.004999 3.454186E-04 -1.654582E-03
1.000000E+03 -.766736 -.016736 3.716659E-04 -1.628334E-03
1.050000E+03 -.849553 -.019553 3.866497E-04 -1.613350E-03
1.100000E+03 -.933911 -.019911 4.030117E-04 -1.596988E-03
1.150000E+03 -1.019707 -.016707 4.209608E-04 -1.579039E-03
1.200000E+03 -1.107373 -.010373 4.408490E-04 -1.559151E-03
1.250000E+03 -1.198022 -.001022 4.632320E-04 -1.536768E-03
1.300000E+03 -1.293431 .007569 4.889359E-04 -1.511064E-03
1.350000E+03 -1.395901 .014098 5.191192E-04 -1.480881E-03
1.400000E+03 -1.507787 .017213 5.553143E-04 -1.444686E-03
1.450000E+03 -1.630730 .014270 5.994224E-04 -1.400578E-03
1.500000E+03 -1.764592 .007408 6.536384E-04 -1.346362E-03
1.550000E+03 -1.906396 -.002396 7.203445E-04 -1.279656E-03
1.600000E+03 -2.050484 -.007484 8.023055E-04 -1.197695E-03
1.650000E+03 -2.191876 -.003876 9.044032E-04 -1.095597E-03
1.700000E+03 -2.335000 .006000 1.040370E-03 -9.596297E-04
1.750000E+03 -2.500432 -.000432 1.252189E-03 -7.478108E-04
1.800000E+03 -2.668671 -.000671 1.648635E-03 -3.513646E-04
2.200000E+03 50.560031 .000000 4.278432E-04 0.000000E+00
2.300000E+03 48.624576 .000000 3.211533E-04 0.000000E+00
2.400000E+03 53.805820 .000000 2.547584E-04 0.000000E+00

SUM OF ERROR SQUARES = 5.784940D-03
WISH TO WRITE RESULTS ON FILE? (Y/N)
> n

Optimizing preprocessor S/FILSYN Manual

14.11

PLOT - WIDE: W, NARROW: N, GRAPHICS: G OR END: E
> e
APPROXIMATING FUNCTION:

* Kk Kk ZEROS * Kk Kk
0.0000000D+00 1.3960145D+04

0.0000000D+00 1.5512946D+04
0.0000000D+00 2.3559077D+04

* Kk Kk POLES * Kk Kk
7.9893407D+03 * 0.0000000D+00
4.8016882D+03 * 8.3172924D+03 *
1.9508602D+03 * 1.1066612D+04 *
5.1062556D+02 * 1.1843603D+04 *

It is not easy to decide when to stop the iteration. Usually, we can look at the deviation function
and count the number of zero crossings. If this number is about the same, or more, than the num-
ber of free parameters we have, we can be fairly confident, that we are indeed close to the opti-
mum. The tabulated results show an +0.025 dB error and the number of sign changes in the error
does seem to indicate that this is now at or very near the global optimum.

At this stage we can still go back to perform more iterations, but decided that these results were
acceptable and wrote the data in a file. The available options are self-explanatory:

MORE ITERATION: I, WRITE RESULTS TO FILE: F, MODIFY DELAY WEIGTH: M OR QUIT: Q
> f

ENTER FILE NAME

> ex141

* K * DONE * Kk x

WISH TO MODIFY DELAY WEIGHT? (Y/N)
> n
*** OPT PREPROCESSOR ENDED ***

Because the specification file had delay data as well, the last prompt permits us to go back and
redo the whole iteration with a different overall delay weight.

We show next what the resulting data file looks like:

C:>type exl4l.dat

This is the title line.

TRANSFER FUNCTION DATA

POLES: (RAD/SEC OR NORMALIZED)

REAL PARTS

4.80168816D+03
1.95086018D+03
5.10625560D+02

! IMAGINARY PARTS
8.31729241D+03
1.10666124D+04
1.18436031D+04

! REAL ROOTS
7.98934073D+03

! ZEROS: (HZ)

! REAL PARTS
0.00000000D+00
0.00000000D+00
0.00000000D+00

! IMAGINARY PARTS
2.22182604D+03
2.46896211D+03
3.74954362D+03

S/FILSYN Manual Optimizing preprocessor

14.12

This is the format S/FILSYN expects the data to be in, poles first, followed by the zeros. Also,
first we list all the real parts and then all the imaginary parts. Finally we demonstrate how this

file can be used to read data back into S/FILSYN:

C:>sfilsyn
* Kk Kk kK S/FILSYN * Kk kK
RELEASE 3.2 VERSION 1 4/1/94
** ROOT SEGMENT **

Copyright (C) 1983-1995 Dr. George Szentirmai.
All Rights Reserved.

READ TRANSFER FUNCTION DATA FROM FILE? (Y/N)

> n

SMAIN: S, PLACER: P OR END: E

> s

ENTER TITLE
> example # 1

LIN.-PHASE LOWPASS:

3, BANDPASS: 4

FUNCTIONAL INPUT: 2

G RAD/SEC: R

FILTER KIND - LUMPED: 0, DIGITAL: 1 OR MICROWAVE: 2
> 0

FILTER TYPE - LOWPASS: 1, HIGHPASS: 2,

> 1

UPPER EDGE OF THE PASSBAND IN HZ

> 2k

PASSBAND - MAX.-FLAT: 0, EQUAL-RIPPLE: 1,

> 2

FREQUENCIES IN - HZ: HZ, KHZ: K, MHZ: M, GHZ:

OR NORMALIZED TO (UPPER) PASSBAND EDGE: N ?

> r !
WHICH POLYNOMIAL IS SPECIFIED E(S):
> e

WHAT IS THE DEGREE OF THE POLYNOMIAL
> 7

HOW MANY COMPLEX ROOT PAIRS

> 3

ENTER 3 REAL PARTS

> r ! Read the data from file

ENTER FILE NAME

> ex141

ENTER
> r !

E, F(S):

3 IMAGINARY PARTS
Read the file again
ENTER 1 REAL ROOTS
> r ! Again
STOPBAND - EQUAL MINIMA:
> 2
ENTER
> 1
ENTER
> 3
ENTER
> r !
ENTER
> r !
ENTER
> 500
ENTER
> 500
ENTER
>0
WISH TO USE NONHURWITZ F(S)
>y
IS THE DEFAULT ALGORITHM ACCEPTABLE?
>y

1 OR SPECIFIED: 2

NO. OF FINITE TRANSMISSION ZEROS

REAL PARTS OF TRANSMISSION ZEROS IN HZ
Read the file

Again
INPUT TERMINATION IN OHMS

OUTPUT TERMINATION (O.
VALUE OF AVERAGE Q.
IF POSSIBLE?

(Y/N)

Optimizing preprocessor

(Y/N)

The OPT program writes data in rad/sec units.

F

MULTIPLICITY OF TRANSMISSION ZERO AT INFINITY

IMAGINARY PARTS OF TRANSMISSION ZEROS IN HZ

INDICATES OPEN OR SHORT)

IF NO PREDISTORTION, ENTER O.

S/FILSYN Manual

14.13

The rest is unimportant and the actual synthesis is uneventful. The passive LC circuit realizing
this transfer function is shown below:

example # 1

1 R 500.000000 ohm
3 C 191.741481 nF
1
4 L C 93.123717 mH RES.FREQUENCY
L 19.347424 nF 3.749544 kHz
5 C 103.920932 nF
1
6 L C 197.480991 mH RES.FREQUENCY
L 21.041956 nF 2.468962 kHz
7 C 45.219507 nF
1
8 L C 93.100338 mH RES.FREQUENCY
L 55.114885 nF 2.221826 kHz
9 C 530.182092 pF
11 R 2.583857 kohm

Finally we can analyze this circuit and display the results that show the smooth and accurate sim-
ulation of the required shape. The computed response and its details in the passband are shown
on the next page. As we can see, the stopband no longer has equal minima and we could probably
touch it up by moving the zeros around a bit, but it does not seem to be worth the trouble.

Example 14.7.2

For this example we shall use the same set of requirements and even the same initial values, ex-
cept that we add a complex quad of transmission zeros (by adding just one real-imaginary pair to
the zeros) and two complex pairs of poles very close by, to simulate a delay section. This time we
will consider the delay requirements as well. We obtained the initial values of the quad of zeros
by delay-equalizing the original 7th degree elliptic lowpass filter from zero to 1.8 kHz. The re-
sulting 11th degree function has initial values in a file called TEST11.PZ:

! POLE-ZERO DATA OF:

! testll

! ZEROS:
0.000000000D+00 1.396014474D+04
0.000000000D+00 1.551294643D+04
0.000000000D+00 2.355907736D+04
4.440000000D+03 4.100000000D+03 ! Added

! POLES:
6.359084810D+03 0.000000000D+00
4.059931126D+03 8.478242531D+03
1.448897681D+03 1.182648729D+04
3.207255958D+02 1.271248589D+04
5.000000000D+03 4.100000000D+03 ! Added
3.880000000D+03 4.100000000D+03 ! Added

S/FILSYN Manual Optimizing preprocessor

14.14

1=a Bl
LH ‘I
|
Fa.8 ' ' II Ii
‘ lII II .~ .l. .
LY -
A4il II
1
- |
Sra.m f
H j
i [
M. B R — —_"-
L1 L.H 2.8 a.8 6.H
FrogiHe il
.8 [t T
R I
4.5 ' T |
.8 |
I |
Sy Tt !
3 - I
8 !
- .'
o e
L1 B4 L% 1.2 L& &8
FrogiHe il

We are going to use the same set of requirements, but will use an overall delay weight of 1.0
since we have no feel as yet as to what the effect of this will be. We also let the program pick the

(opti- mal) flat delay to provide a starting point, even though this will almost certainly cause

trouble,

C:>opt
Copyright (C)

Version 1.2

1991-1995 Dr.
All Rights Reserved.

10/3/95

***x*x OPTIMIZING PREPROCESSOR ***x*

FIRST WE NEED THE TABULATED REQUIREMENTS

ENTER FILE NAME
> example

Optimizing preprocessor

George Szentirmai

S/FILSYN Manual

14.15

ENTER NORMALIZATION FREQUENCY (UPPER EDGE OF PASSBAND)
> 2k
ENTER OVERALL DELAY WEIGHT
> 1
ENTER FLAT DELAY (-1.0 WILL LET PROGRAM COMPUTE IT)
> -1
FILTER KIND - LUMPED: 0, DIGITAL: 1 OR MICROWAVE: 2
> 0
APPROXIMATING FUNCTION DATA IS NEXT
ENTER DEGREE (SHOULD BE NO MORE THAN 19)
> 11
ENTER MULTIPLICITY OF ZERO AT ZERO
> 0
ENTER NUMBER OF IMAGINARY-AXIS ZEROS
> 3
ENTER NUMBER OF COMPLEX ZEROS
> 1
WE SHALL READ (NORMALIZED) INITIALIZATION DATA FROM A FILE NEXT
ENTER FILE NAME
> testll
ANY OF THESE TO REMAIN FIXED? (Y/N)
>y
ENTER THE SERIAL NUMBERS OF THE 4 ZEROS YOU WISH TO REMAIN FIXED
ENTER "A" IF YOU WISH ALL TO REMAIN FIXED
> 1 2 3 ! We keep the imaginary axis zeros fixed.
ENTER THE SERIAL NUMBERS OF THE 6 POLES YOU WISH TO REMAIN FIXED
> ! All poles are allowed to vary.
This is the title line.

NUMBER OF POINTS SPECIFIED = 51

STARTING POINT 100.00000 Hz
END POINT = 10.00000 kHz
LOSS AND DELAY REQUIREMENTS

OF LOSS POINTS SPECIFIED = 51
OF DELAY POINTS SPECIFIED = 26
OVERALL DELAY WEIGHT = 4.000000E+06

LUMPED FUNCTION IS SPECIFIED

APPROXIMATING FUNCTION:

* Kk Kk ZEROS * Kk Kk

0.0000000D+00 1.3960145D+04
0.0000000D+00 1.5512946D+04
0.0000000D+00 2.3559077D+04
4.4400000D+03 * 4.1000000D+03 *
* Kk Kk POLES * Kk Kk
6.3590848D+03 * 0.0000000D+00
4.0599311D+03 * 8.4782425D+03 *
1.4488977D+03 * 1.1826487D+04 *
3.2072560D+02 * 1.2712486D+04 *
5.0000000D+03 * 4.1000000D+03 *
3.8800000D+03 * 4.1000000D+03 *
NUMBER OF VARIABLE PARAMETERS = 13

We are going to let the complex zeros vary, but keep those on the imaginary axis fixed. We do
not wish to show a lot of tables, suffice it to say that at one point we have the following printout:

SUM OF ERROR SQUARES = 1.886389D-01 FLAT DELAY = -1.264717D-03

APPROXIMATING FUNCTION:

S/FILSYN Manual Optimizing preprocessor

14.16

* * k%

ZEROS ***

.0000000D+00
.0000000D+00
.0000000D+00
.3340594D+03

POLES ***

.4984104D+03
.2633490D+03
.6697933D+03
.3825722D+02
.9206917D+03
.7476255D+03

* % X X X

*

N SR

N o)

UNREALIZABLE RESULTS

ENTER OVERALL DELAY WEIGHT AND FLAT DELAY

> 1

-1m

OVERALL DELAY WEIGHT

.3960145D+04
.5512946D+04
.3559077D+04
.2292821D+03

.0000000D+00
.3996726D+03
.1811570D+04
.2499600D+04
.5448786D+03
.2693847D+03

* ok % %

*

! PLEASE RERUN IT WITH AN INCREASED FLAT DELAY

4.000000E+06

Whether this stage of the approximation is acceptable is a moot question, since the resulting
trans- fer function is not realizable (one of the poles would be in the right half of the s plane).
Note a- gain, that our sign definitions are such that everything is positive, when the function is
realizable. This way a nonrealizable function will be more easily recognizable.

The program recognized this problem and requests new delay weight, and in particular, flat delay
values. In order to get the pole back in the left half plane, we must pick a larger (more positive)
flat delay, than the computer-selected value of -1.265 msec. We kept the weight unchanged. In
parenthesis, please note that the multiplier we specify, is multiplied by the square of the normal-
ization frequency. This is to compensate for the dimensional difference between loss and delay.

To continue, we start with the simplex method again:

NO MORE ITERATION:

> 1

METHOD NO. 1

ITERATION = 10 ERROR = 8.730467D+00
ITERATION = 20 ERROR = 8.456851D+00
ITERATION = 30 ERROR = 7.365659D+00
ITERATION = 40 ERROR = 5.939167D+00
ITERATION = 50 ERROR = 5.561982D+00
ITERATION = 60 ERROR = 5.388995D+00
ITERATION = 70 ERROR = 5.366968D+00
ITERATION = 80 ERROR = 5.286231D+00
ITERATION = 90 ERROR = 5.211489D+00
ITERATION = 100 ERROR = 5.038269D+00
SIMPLEX -- NO CONVERGENCE IN 100 ITERATIONS

0 OR METHOD 1,

*** SIMPLEX *** IS FINISHED
APPROXIMATING FUNCTION:

* * k%

0.
0.0000000D+00
0.

4.2928005D+03

W PP oy

ZEROS ***
0000000D+00

0000000D+00

POLES ***

.4712618D+03
.1440708D+03
.5186986D+03
.6814785D+02
.5632568D+03
.6832208D+03

ok o X X X

SN

I e CEe)

Optimizing preprocessor

.3960145D+04
.5512946D+04
.3559077D+04
.2465206D+03

.0000000D+00
.0761369D+03
.1521520D+04
.2492700D+04
.6676191D+03
.1522142D+03

* X X X o

S/FILSYN Manual

14.17

This is now realizable again, and after further steps of optimization and some fine tuning of the
flat delay (we went up to -0.8 msec), we finally get the results shown below:

x RESULTS OF THE ANALYSIS *

NNONNNNNHRERRRERRRERRRERRERERREREROO-JO 0TS WN -

SUM

WISH TO WRITE RESULTS ON FILE?

> n

PLOT - WIDE: W, NARROW: N, GRAPHICS:

> e

FREQUENCY
IN HZ

.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+02
.000000E+03
.050000E+03
.100000E+03
.150000E+03
.200000E+03
.250000E+03
.300000E+03
.350000E+03
.400000E+03
.450000E+03
.500000E+03
.550000E+03
.600000E+03
.650000E+03
.700000E+03
.750000E+03
.800000E+03
.200000E+03
.300000E+03
.400000E+03
.500000E+03
.600000E+03
.700000E+03

-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-1.
-2.
-2.
-2.
-2.
-2.
57.
56.
61.
69.
58.
55.

OF ERROR SQUARES

LOSS VALUES

ACTUAL DEVIATION
.070641 .077641
.004750 .033750
.094459 .029459
.202991 .086991
.284522 .102522
.312274 .048274
.301952 .059048
.318027 .155973
.432796 .170204
.670528 .079472
.821925 .008075
.978511 .064511
124858 .121858
246978 .149978
336696 .139696
395660 .094660
437213 .027213
484775 .040225
566264 .078736
704406 .067594
901664 .002336
120040 .077040
270763 .082763
269634 .071367
226238 .273762
761218 .093218
686730 .000000
308350 .000000
867020 .000000
365441 .000000
268121 .000000
129960 .000000

= 8.609364D+00
(Y/N)

APPROXIMATING FUNCTION:

* Kk Kk

0.

0
0.
3

* Kk Kk

5
2
1.
8
3

3.

MOR
> f
ENT

> e
* Kk Kk

ZEROS **x*

0000000D+00
.0000000D+00
0000000D+00
.6017091D+03

POLES ***

.3759082D+03
.6023113D+03
2057823D+03
.4671037D+01
.0462933D+03
1854376D+03
E ITERATION:

ER FILE NAME
x142
DONE ***

S/FILSYN Manual

Ho% % X > % %

WN e

Wb PP JO0

.3960145D+04
.5512946D+04
.3559077D+04
.9618199D+03

.0000000D+00
.9196307D+03
.0726762D+04
.1855183D+04
.0180091D+03
.4819815D+03

WRITE RESULTS

* % X X X

TO FILE:

RPFRPPEPNMNNNWRRRRRFWOWOOOOO O 0 0 0 OO IWIWWERF WOWWOoWw o

FLAT DELAY =

DELAY VALUES
DEVIATION

ACTUAL

.189537E-04
.496122E-04
.971067E-04
.521457E-04
.977273E-04
.014657E-03
.950035E-04
.505436E-04
.045090E-04
.754965E-04
.692099E-04
.671887E-04
.673826E-04
.674714E-04
.658324E-04
.626321E-04
.605943E-04
.651318E-04
.838846E-04
.256550E-04
.976218E-04
.097651E-03
.200204E-03
.254565E-03
.237453E-03
.256177E-03
.012424E-04
.421242E-04
.021237E-04
.730375E-04
.508496E-04
.333284E-04

G OR END: E

-3.
-3.
-3.
-2.
-2.
-1.
-2.
-2.
-2.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-3.
-2.
-2.
-1.
.039014E-07
.456520E-05
.745308E-05
.617720E-05
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00
.000000E+00

N

OO OO OOUWwWwWL

810464E-04
503879E-04
028934E-04
478544E-04
022728E-04
853434E-04
049966E-04
494566E-04
954911E-04
245036E-04
307902E-04
328114E-04
326176E-04
325287E-04
341677E-04
373680E-04
394058E-04
348683E-04
161155E-04
743452E-04
023783E-04
023487E-04

-8.000000D-04

F, MODIFY DELAY WEIGTH: M OR QUIT: Q

Optimizing preprocessor

14.18

WISH TO MODIFY DELAY WEIGHT?
> n
*** OPT PREPROCESSOR ENDED ***

(Y/N)

All of these choices are based on nothing more than looking at the results as the optimization
pro- cedure progresses. These are clearly judgment calls and other engineers will apply different
num- bers. This is valid for both the overall delay weight as well as the flat delay value, and
especially when to stop the iteration.

0.8 ukang Lo 1Z.m
|
14.4 L
B — — H
18,8 T — H -
| !

|

I |
] “l 1]

I:_ -

1 -

||: -
(=] v |: [
S i Z 4 3
a [=
2 2
a -- | =1

I
Mo H.H

LN} B A.A i.Z i.& 2.8

FrogiHe gl

Clearly, the loss approximation is not as good as it was with no concern for the delay, but the de-
lay is flatter. The stopband performance is about the same as in the first example, i.e. quite good.
Therefore we only show the details of the passband above. Note the sharp notch near the pass-
band edge; this is due to the very small real part of one of the poles. One could, of course,
modify the parameters we selected, in particular, the flat delay and the delay weight and come up
with an entirely different set of final results.

Proceeding to the actual realization of this transfer function, we had no problem in finding the
passive LC implementation:

example # 2

1 R 500.000000 ohm
3 C 106.425726 nF

1
4 L C 59.994301 mH RES.

L 30.031253 nF 3.749544 kHz
5 C 199.985087 nF

1
6 L C 50.136274 mH RES.

L 102.345347 nF 2.221826 kHz
7 C 313.487053 nF

Optimizing preprocessor

S/FILSYN Manual

14.19

—h
8 L C 22.984410 mH RES.FREQUENCY
L 180.791518 nF 2.468962 kHz
9 C 19.616167 nF
—
L 139.384034 mH
| C 303.940870 nF
——C——% 10.318644 uF
|
—L—C+— 2.236930 mH
| 82.064824 uF
| C 14.916650 ufF
L 2.840082 mH
10 L |
13 C 12.549721 uF
15 R 7.423768 ohm

While this circuit is nominally realizable, the element values make an actual implementation
diffi- cult, due again to the small real part of a pole. A manual synthesis with a different order of
zeros may yield somewhat better results. Naturally this would not be a problem in an active-RC
imple- mentation, but nevertheless, physical realization of this function is problematic.

Does this mean that there is no better solution? By no means. We have tried two other sets of ini-
tial conditions, mainly based on the optimal results of Example 1 above. We obtained somewhat
better overall error values (3.8 and 2.4 versus the 8.6 value above), but these improvements are
indeed minor and the overall results were not any better. The sharp peaks at 1.9 kHz, although of
varying heights, were still there and we doubt that the element values would have been any better
either.

What else is possible? Clearly we can modify the two global delay parameters above, or the
whole requirement table. We can add a few additional points between 1.8 kHz and 2 kHz with a
low weight to try to suppress the sharp peak, for instance. On a more general level, we could play
with the optimization algorithms or the error definitions. Both of these would undoubtedly have
an effect, but we doubt that the quality of the results would change drastically.

Along an entirely different line, we could simply take the circuit obtained in Example 1 above
and equalize its delay. This yields an overall solution that is substantially better than any of the
solu- tions obtained by the simultaneous approximation described here.

Naturally, this is only one example and we should not draw any major conclusions from it. The
only thing we wish to point out is that one should keep a completely open mind regarding opti-
mization in general, and simultaneous optimization of loss and delay, in particular.

Example 14.7.3

Our last example will be a IIR digital filter to follow the same set of requirements. The initial
approximating function will be an 8th order elliptic design using the same specifications, with
the exception of a 0.1 dB passband loss, and a 20kHz sampling rate. S/FILSYN has written the
data into the file called TEST8D.PZ in normalized form:

S/FILSYN Manual Optimizing preprocessor

14.20

! POLE-ZERO DATA OF:

! test8d

! ZEROS:
0.000000000D+00 1.116711079D+00
0.000000000D+00 1.206681054D+00
0.000000000D+00 1.565968455D+00
0.000000000D+00 3.963870373D+00

! POLES:
4.611619076D-01 3.385118231D-01
2.485100389D-01 7.888886093D-01
9.516201768D-02 9.619194238D-01
2.319896771D-02 1.014133307D+00

Using the same requirement table as before but ignoring the delay, our run proceeds as follows:

C:>opt
x*x QPTIMIZING PREPROCESSOR *x*

Copyright (C) 1991-1995 Dr. George Szentirmai
All Rights Reserved.

Version 1.2 10/3/95

FIRST WE NEED THE TABULATED REQUIREMENTS

ENTER FILE NAME

> example

ENTER NORMALIZATION FREQUENCY (UPPER EDGE OF PASSBAND)

> 2k

ENTER OVERALL DELAY WEIGHT

> 0

FILTER KIND - LUMPED: 0, DIGITAL: 1 OR MICROWAVE: 2

> 1

ENTER SAMPLING FREQUENCY

> 20k

APPROXIMATING FUNCTION DATA IS NEXT

ENTER DEGREE (SHOULD BE NO MORE THAN 12)

> 8

ENTER MULTIPLICITY OF ZERO AT ZERO

> 0

ENTER NUMBER OF IMAGINARY-AXIS ZEROS

> 4

ENTER NUMBER OF COMPLEX ZEROS

> 0

WE SHALL READ (NORMALIZED) INITIALIZATION DATA FROM A FILE NEXT
ENTER FILE NAME

> test8d

ANY OF THESE TO REMAIN FIXED? (Y/N)

>y

ENTER THE SERIAL NUMBERS OF THE 4 ZEROS YOU WISH TO REMAIN FIXED
ENTER "A" IF YOU WISH ALL TO REMAIN FIXED

> a

ENTER THE SERIAL NUMBERS OF THE 4 POLES YOU WISH TO REMAIN FIXED
>

Again we keep all the zeros fixed and let all the poles vary. The summary is followed by the first
round of iterations.

This is the title line.
NUMBER OF POINTS SPECIFIED = 51
STARTING POINT 100.00000 Hz
END POINT = 10.00000 kHz
LOSS AND DELAY REQUIREMENTS

OF LOSS POINTS SPECIFIED = 51
OF DELAY POINTS SPECIFIED = 26
OVERALL DELAY WEIGHT = 0.000000E+00

Optimizing preprocessor S/FILSYN Manual

DIGITAL FUNCTION IS SPECIFIED

SAMPLING FREQUENCY

APPROXIMATING FUNCTION:

20.00000 kHz

* Kk ZEROS * Kk
0.0000000D+00 1.1167111D+00
0.0000000D+00 1.2066811D+00
0.0000000D+00 1.5659685D+00
0.0000000D+00 3.9638704D+00
* Kk Kk POLES * Kk Kk
4.6116191D-01 * 3.3851182D-01
2.4851004D-01 * 7.8888861D-01
9.5162018D-02 * 9.6191942D-01

2.3198968D-02 * 1.0141333D+00
NUMBER OF VARIABLE PARAMETERS =

QO * X ok

xx RESULTS OF THE ANALYSIS *

FREQUENCY LOSS VALUES DELAY VALUES
IN HZ ACTUAL DEVIATION ACTUAL DEVIATION

1.000000E+02 -1.081278 -1.074278 2.932157E-04 -1.706784E-03
2.000000E+02 -1.099978 -1.070978 2.970692E-04 -1.702931E-03
3.000000E+02 -1.125754 -1.060754 3.030931E-04 -1.696907E-03
4.000000E+02 -1.151568 -1.035568 3.107473E-04 -1.689253E-03
5.000000E+02 -1.169741 -.987741 3.194202E-04 -1.680580E-03
6.000000E+02 -1.174014 -.910014 3.286199E-04 -1.671380E-03
7.000000E+02 -1.161803 -.800803 3.382280E-04 -1.661772E-03
8.000000E+02 -1.135855 -.661855 3.487521E-04 -1.651248E-03
9.000000E+02 -1.104575 -.501575 3.614909E-04 -1.638509E-03
1.000000E+03 -1.080370 -.330370 3.785441E-04 -1.621456E-03
1.050000E+03 -1.074965 -.244965 3.895230E-04 -1.610477E-03
1.100000E+03 -1.075694 -.161694 4.026269E-04 -1.597373E-03
1.150000E+03 -1.083113 -.080113 4.182171E-04 -1.581783E-03
1.200000E+03 -1.096922 .000078 4.366144E-04 -1.563386E-03
1.250000E+03 -1.115748 .081252 4.580588E-04 -1.541941E-03
1.300000E+03 -1.136981 .164019 4.826662E-04 -1.517334E-03
1.350000E+03 -1.156844 .253156 5.103984E-04 -1.489602E-03
1.400000E+03 -1.170737 .354263 5.410806E-04 -1.458919E-03
1.450000E+03 -1.174124 .470876 5.745242E-04 -1.425476E-03
1.500000E+03 -1.163962 .608038 6.108287E-04 -1.389171E-03
1.550000E+03 -1.140597 .763403 6.509255E-04 -1.349075E-03
1.600000E+03 -1.109637 .933363 6.973757E-04 -1.302624E-03
1.650000E+03 -1.082690 1.105310 7.553518E-04 -1.244648E-03
1.700000E+03 -1.075297 1.265703 8.335784E-04 -1.166422E-03
1.750000E+03 -1.099364 1.400636 9.445496E-04 -1.055451E-03
1.800000E+03 -1.147391 1.5206009 1.102034E-03 -8.979656E-04
2.200000E+03 49.164171 .000000 6.950275E-04 0.000000E+00
2.300000E+03 50.595990 .000000 4.371825E-04 0.000000E+00

SUM OF ERROR SQUARES = 5.002944D+01

WISH TO WRITE RESULTS ON FILE? (Y/N)

> n

PLOT - WIDE: W, NARROW: N, GRAPHICS: G OR END: E

> e

NO MORE ITERATION: 0O OR METHOD 1, 2 OR 3

> 1

METHOD NO. 1

ITERATION = 10 ERROR = 6.242585D+00

ITERATION = 20 ERROR = 2.616583D+00

ITERATION = 30 ERROR = 7.947884D-01

ITERATION = 40 ERROR = 5.172047D-01

ITERATION = 50 ERROR = 4.917964D-01

ITERATION = 60 ERROR = 4.860069D-01

ITERATION = 70 ERROR = 4.860069D-01
S/FILSYN Manual Optimizing preprocessor

14.22

ITERATION = 80 ERROR = 4.860069D-01
ITERATION = 90 ERROR = 4.860069D-01
ITERATION = 100 ERROR = 4.860069D-01

SIMPLEX -- NO CONVERGENCE IN 100 ITERATIONS

*** SIMPLEX *** IS FINISHED

APPROXIMATING FUNCTION:

* k% ZEROS * k%
0.0000000D+00 1.1167111D+00
0.0000000D+00 1.2066811D+00
0.0000000D+00 1.5659685D+00
0.0000000D+00 3.9638704D+00
* * * POLES * * *
4.7400109D-01 * 3.6579029D-01 *
2.3849495D-01 * 8.1524633D-01 *
8.2085726D-02 * 9.3755251D-01 *
2.9326953D-02 * 1.0318822D+00 *
NO MORE ITERATION: 0 OR METHOD 1, 2 OR 3
> 2
METHOD NO. 2
ITERATION = 1 ERROR = 3.00492269D-02
ITERATION = 2 ERROR = 2.93250515D-02
ITERATION = 3 ERROR = 2.92571935D-02
ITERATION = 4 ERROR = 2.91311138D-02
METHOD NO. 3
METHOD 3 WARNING -- INFO = 3: CANNOT FIND LOWER POINT

*** GRADIENT *** IS FINISHED

APPROXIMATING FUNCTION:

* Kk Kk ZEROS * Kk Kk
0.0000000D+00 1.1167111D+00
0.0000000D+00 1.2066811D+00
0.0000000D+00 1.5659685D+00
0.0000000D+00 3.9638704D+00

* Kk Kk POLES * Kk Kk
5.4482621D-01 * 4.0107110D-01 *
2.5942784D-01 * 8.1490100D-01 *
8.5633150D-02 * 9.5598255D-01 *
3.8728812D-02 * 1.0237237D+00 *

NO MORE ITERATION: 0 OR METHOD 1, 2 OR 3

> 0

xx RESULTS OF THE ANALYSIS **

FREQUENCY LOSS VALUES DELAY VALUES
IN HZ ACTUAL DEVIATION ACTUAL DEVIATION

1.000000E+02 .019902 .026902 2.587924E-04 -1.741208E-03
2.000000E+02 -.011177 .017823 2.618905E-04 -1.738110E-03
3.000000E+02 -.060752 .004248 2.669385E-04 -1.733062E-03
4.000000E+02 -.125877 -.009877 2.737850E-04 -1.726215E-03
5.000000E+02 -.203220 -.021220 2.822709E-04 -1.717729E-03
6.000000E+02 -.289874 -.025874 2.922986E-04 -1.707701E-03
7.000000E+02 -.384288 -.023288 3.039366E-04 -1.696063E-03
8.000000E+02 -.487174 -.013174 3.175526E-04 -1.682448E-03
9.000000E+02 -.602039 .000961 3.339573E-04 -1.666043E-03
1.000000E+03 -.734970 .015030 3.545266E-04 -1.645474E-03
1.050000E+03 -.810504 .019496 3.669731E-04 -1.633027E-03
1.100000E+03 -.893222 .020778 3.812551E-04 -1.618745E-03
1.150000E+03 -.983730 .019270 3.977048E-04 -1.602295E-03
1.200000E+03 -1.082256 .014744 4.166701E-04 -1.583330E-03
1.250000E+03 -1.188503 .008497 4.384992E-04 -1.561501E-03

Optimizing preprocessor S/FILSYN Manual

S e el el e e

.300000E+03
.350000E+03
.400000E+03
.450000E+03
.500000E+03
.550000E+03
.600000E+03
.650000E+03
.700000E+03
.750000E+03
.800000E+03
.200000E+03

-1.

-1

-1.

-1.
-1.

-2.
-2.
.514717 -.
-2.
46.

SUM OF ERROR SQUARES

WISH TO WRITE RESULTS ON FILE?

> n

PLOT - WIDE: W, NARROW: N, GRAPHICS:

> e

.037223
177616
338130

661979
657190

301540 -.
.419795 -.
541213 -.
.663726 -.
786125 -.
909252 -.
.005777
.010384
.002870

000540
009795
016213
018726
014125
005252

014717

.006021
.000000

= 7.867535D-03

APPROXIMATING FUNCTION:

* Kk Kk

0.

0
0.
0

* Kk Kk

(€]

w o N

ZEROS **x*

0000000D+00
.0000000D+00
0000000D+00
.0000000D+00

POLES **x*

.4482621D-01
.5942784D-01
.5633149D-02
.8728812D-02

* % X %

WP

= O 0

.0107110D-01
.1490100D-01
.5598255D-01
.0237340D+00

.1167111D+00
.2066811D+00
.5659685D+00
.9638704D+00

* ok % %

(Y/N)

QO 00 JJoo) U1 U1 x>

G OR END:

.635238E-04
.920531E-04
.243999E-04
.609814E-04
.025639E-04
.507427E-04
.087633E-04
.827549E-04
.832670E-04
.026143E-03
.228676E-03
.689834E-04

-1.

-1

536476E-03

.507947E-03
-1.
.439019E-03
-1.
-1.
.291237E-03
-1.
-1.
.738571E-04
=7.
.000000E+00

475600E-03

397436E-03
349257E-03

217245E-03
116733E-03

713238E-04

14.23

This seems to be about as good as we can expect, so we stopped the process and wrote the re-

sults to a file, as usual:

MORE ITERATION:

> f

ENTER FILE NAME
> a:ex143

* Kk

WISH TO MODIFY DELAY WEIGHT?

> n

DONE ***

I,

(Y/N)

*** OPT PREPROCESSOR ENDED ***

This is a very decent approximation, and we proceed to implement the corresponding digital

WRITE RESULTS TO FILE:

F, MODIFY DELAY WEIGTH: M OR QUIT: Q

filter as follows. Note that the preprocessor now writes the pole data in normalized units while
the zeros are written in Hz as needed

This is the title line.
TRANSFER FUNCTION DATA

POLES:
REAL PARTS

5.44826211D-01
2.59427840D-01
8.56331491D-02
3.87288120D-02

IMAGINARY PARTS

4.01071103D-01
8.14901001D-01
9.55982551D-01
1.02373397D+00

S/FILSYN Manual

(RAD/SEC OR NORMALIZED)

Optimizing preprocessor

14.24

! REAL ROOTS

! ZEROS: (HZ)

! REAL PARTS
0.00000000D+00
0.00000000D+00
0.00000000D+00
0.00000000D+00

! IMAGINARY PARTS
2.21587432D+03
2.37876405D+03
2.99640322D+03
5.79700242D+03

Hence the data input sequence to S/FILSYN is as follows:

C:>sfilsyn
* % K K % S/FILSYN * kK kX
RELEASE 3.2 VERSION 1 4/1/94

** ROOT SEGMENT **

Copyright (C) 1983-1995 Dr. George Szentirmai.
All Rights Reserved.

READ TRANSFER FUNCTION DATA FROM FILE? (Y/N)

> n

SMAIN: S, PLACER: P OR END: E

> s

ENTER TITLE

> example # 3

FILTER KIND - LUMPED: 0, DIGITAL: 1 OR MICROWAVE: 2
> 1

ENTER SAMPLING FREQUENCY IN HZ

> 20k

FILTER TYPE - LOWPASS: 1, HIGHPASS: 2 OR BANDPASS: 4
> 1

UPPER EDGE OF THE PASSBAND IN HZ

> 2k

PASSBAND - MAX.-FLAT: 0, EQUAL-RIPPLE: 1, FUNCTIONAL INPUT: 2
> 2

FREQUENCIES MUST BE GIVEN IN NORMALIZED UNITS

WHICH POLYNOMIAL IS SPECIFIED E(S): E, F(S): F

> e

WHAT IS THE DEGREE OF THE POLYNOMIAL
> 8

HOW MANY COMPLEX ROOT PAIRS

> 4

ENTER 4 REAL PARTS

> r ! Read the file

ENTER FILE NAME

> a:exl43

ENTER 4 IMAGINARY PARTS

> r ! Read the file again

STOPBAND - EQUAL MINIMA: 1 OR SPECIFIED: 2

> 2

ENTER MULTIPLICITY OF TRANSMISSION ZERO AT NYQUIST FREQUENCY
> 0

ENTER NO. OF FINITE TRANSMISSION ZEROS

> 4

ENTER REAL PARTS OF TRANSMISSION ZEROS IN HZ

> r ! Read the file

ENTER IMAGINARY PARTS OF TRANSMISSION ZEROS IN HZ
> r ! Again

ENTER ZS (-1,0 OR 1). FOR DEFAULT, ENTER: O

> -1

Optimizing preprocessor S/FILSYN Manual

14.25

Leaving out the rest and coming back into the DIGITAL segment after the filter is synthesized,
we have the final results, including all possible implementations:

*** S/FILSYN *** FILTER PROGRAM
example # 3
LOW-PASS FILTER
DIGITAL FILTER
SAMPLING FREQUENCY
FUNCTIONAL INPUT WAS USED
UPPER PASSBAND EDGE FREQUENCY =

SPECIFIED STOPBAND TYPE

20.000000 kHz

2.000000 kHz

MULTIPLICITY OF ZERO AT NYQUIST FREQUEN. = 0
NUMBER OF FINITE TRANSMISSION ZEROS = 4
OVERALL FILTER DEGREE = 8

TRANSMISSION ZEROS

REAL PART IMAGINARY PART
0.0000000D+00 2.2158743D+03
0.0000000D+00 2.3787641D+03
0.0000000D+00 2.9964032D+03
0.0000000D+00 5.7970024D+03

TIR DIGITAL FILTER TRANSFER FUNCTION
7Z TRANSFORM USED BILINEAR WITH PREWARP
FILTER TYPE LOWPASS
FRONT-END MULTIPLIER =
DECIMAL: D OR HEXADECIMAL: X
> d

9.77861009255D-03

xx CASCADE FORM *
NUMERATOR COEFFICIENTS

Zx* (1 0) Zx* (=1) Zx* (=2)
1.000000000D+00 4.955552906D-01 1.000000000D+00
1.000000000D+00 -1.177398070D+00 1.000000000D+00
1.000000000D+00 -1.467038613D+00 1.000000000D+00
1.000000000D+00 -1.534649599D+00 1.000000000D+00

DENOMINATOR COEFFICIENTS

Z*% (0) Zx% (-1) Zxx (=2)
1.000000000D+00 -1.357245681D+00 4.950695593D-01
1.000000000D+00 -1.481439154D+00 7.293520839D-01
1.000000000D+00 -1.566030819D+00 9.034651035D-01
1.000000000D+00 -1.565531606D+00 9.556898164D-01

***x*x PARALLEL (PARTIAL FRACTION) FORM ***x*

THE GENERAL FORM IS:

(Al + A2 * Z2**(=1))/(1 + A3 * Z**(-1) + Ad * Z**(-2))

Al A2 A3 A4
2.779308750D-01 2.618093477D-03 -1.357245681D+00 4.950695593D-01
-4.877453671D-01 2.255602928D-01 -1.481439154D+00 7.293520839D-01
2.335867602D-01 -2.013067829D-01 -1.566030819D+00 9.034651035D-01
-4.535866123D-02 4.604026021D-02 -1.565531606D+00 9.556898164D-01

CONSTANT TERM = 3.136500328D-02

***xx GRAY-MARKEL LATTICE ***x*

MULTIPLIER TAP-WEIGHT
-8.193453229D-01 -1.130796909D-04
9.956199293D-01 2.589417717D-04
-8.754593439D-01 2.673015082D-03
9.631529038D-01 9.936082593D-03
-9.178669014D-01 2.980425222D-02
9.002876466D-01 4.088692929D-02

S/FILSYN Manual

Optimizing preprocessor

14.26

-7.507319377D-01
3.117681834D-01

0.000000000D+00

4.298878954D-02
2.236090678D-02

9.778610093D-03

uEsAple

11
B |
]
!
| ||I \
2.8 ||'| ! e -
Al ;
]
o |
S48 -
K — ! |
E -
-
LN] 1.8] a.8 4.8 6.8

Freg fHe

The analysis shown graphically above, indicates the good agreement. In fact, this is the best of
the three approximations we have tried. The stopband is nearly exactly equal minima and the
pass- band approximation is very smooth, with no sharp spikes in the transition band.

14.8 SUMMARY

This optimizing preprocessor now fills the gap of offering passband shapes other than the usual
flat ones. Based on the transfer function poles and zeros, the iterative procedure is much more
rugged, reliable and faster, than working with element values would have been.

However, as all iterative nonlinear optimization procedures, this one seems to have slight quirks
and while we have always been able to obtain satisfactory results so far, no guarantees are
offered that it will always work (as S/FILSYN will) or that if it does, it does indeed find the
global opti- mum.

The program has also been used successfully for microwave filters as well. One example may be
the compensation of dissipative effects, for which there is no theoretical solution available.

Any comments or suggestions about possible improvements to this program will be gratefully
accepted.

Optimizing preprocessor S/FILSYN Manual

